Neighboring effect of pyrazole rings: regio- and stereoselective Wagner-Meerwein rearrangement in electrophilic addition reactions of norbornadiene-fused pyrazoles

Tomoshige Kobayashi * and Yosuke Uchiyama
Department of Chemistry, Faculty of Science, Shinshu University, Asahi, Matsumoto 390-8621, Japan

Received (in Cambridge, UK) 28th March 2000, Accepted 18th May 2000
Published on the Web 14th July 2000

The electrophilic addition reactions of norbornadiene-fused pyrazoles with bromine or p-nitrobenzenesulfenyl chloride provided the skeletally rearranged adducts regio- and stereoselectively probably via the neighboring group participation of a pyrazole ring accompanied by the formation of a bridged pyrazolium ion.

Introduction

Neighboring group participation has been well recognized to control the rate and the stereoselectivity of organic reactions. ${ }^{1,2}$ Recently, we found that the electrophilic addition reactions of norbornadiene-fused five-membered heteroaromatics such as furan, pyrrole, and thiophene underwent the stereoselective Wagner-Meerwein rearrangement, and the neighboring group participation of these rings was found to be more effective than that of a benzene ring. ${ }^{3,4}$ We also reported that even electrondeficient six-membered heteroaromatics such as pyridazine and pyrazine have the ability to stabilize a remote cationic center to some extent. ${ }^{5-7}$

In this paper, we describe the synthesis of novel norborna-diene-fused pyrazoles and their electrophilic addition reactions with bromine and an arenesulfenyl chloride, where the neighboring pyrazole ring was demonstrated to influence not only the stereoselectivity but also the regioselectivity of the reaction.

Results and discussion

Syntheses of norbornadiene-fused pyrazoles

Synthesis of the norbornadiene-fused pyrazole $\mathbf{3}$ is illustrated in Scheme 1. The 1,3-dipolar cycloaddition reaction of 2-tosyl-

Scheme 1 Reagents and conditions: i, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 4 \mathrm{~h}, 97 \%$ ($\mathbf{2 a}: \mathbf{2 b}=5: 1$); ii, NaH, THF, rt, $24 \mathrm{~h}, 85 \%$.
norbornadiene ${ }^{8,9} \mathbf{1}$ and diazomethane took place at the double bond which is electronically activated by the tosyl substituent to give a 5:1 mixture of exo and endo adducts $\mathbf{2 a}$ and $\mathbf{2 b}$.

The stereoselectivity is in contrast to that of the reaction of 1 with 2-diazopropane, which has been reported to give exclusively the corresponding exo adduct. ${ }^{9}$

The dehydrosulfonylation of the exo and endo mixture 2 with sodium hydride provided 4,7-dihydro-4,7-methano- 2 H indazole (3) in good yield. The yield of the pyrazole 3 was unsatisfactory when $\mathrm{BuLi}(30 \%)$ or $\mathrm{KOBu}^{t}(6 \%)$ was used as a base. ${ }^{10}$

Tautomerism of pyrazoles has received much attention, ${ }^{11,12}$ and tautomerism between the $2 H$-form 3 and the $1 H$-form 4 is possible for the norbornadiene-fused pyrazole. However, we could clearly determine the structure of 3 to be the 2 H tautomer by comparison of the ${ }^{13} \mathrm{C}$ chemical shift at the $\mathrm{C}-3$ position with those of camphor-fused pyrazoles (vide infra). ${ }^{13-16}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$ at various temperatures from $-100^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ exhibited no significant change in the spectrum such as broadening of peaks or change of chemical shifts. This indicates that no tautomerism is observed between $\mathbf{3}$ and $\mathbf{4}$ because the 2 H -form is thermodynamically more stable than the $1 H$-form. The relative stability between the $2 H$-isomer 3 and the $1 H$-isomer 4 is in agreement with that of camphorfused pyrazoles ${ }^{13,14}$ and the carbocyclic congener, isodicyclopentadiene. ${ }^{17}$

The N-alkylation reaction of $\mathbf{3}$ with sodium hydride and methyl iodide gave the 2-methyl derivative 5 as the major product along with the 1-methyl derivative $\mathbf{1 0}$ (Scheme 2). In

Scheme 2
contrast, treatment of $\mathbf{3}$ with the Meerwein reagent provided the 1-ethyl derivative $\mathbf{1 1}$ predominantly, and a trace amount of the 2-ethyl isomer 6 . Phenyl isocyanate reacted with $\mathbf{3}$ to afford exclusively the 2-phenylcarbamoyl derivative 7. Acylation reactions of 3 with sodium hydride and benzoyl chloride or p-nitrobenzoyl chloride gave 2-aroyl derivatives 8 and 9 , respectively. To our surprise, the p-nitrobenzoylation in the presence of triethylamine resulted in the formation of 1-pnitrobenzoyl isomer $\mathbf{1 2}$ as a major product. The yields of the products as well as the ${ }^{13} \mathrm{C}$ NMR chemical shifts at the 3-position $\left(\delta_{\mathrm{C} 3}\right)$ of the fused pyrazoles and of $\mathbf{3}$ are listed in Table 1. The values of $\delta_{\mathrm{C} 3}$ clearly distinguish the $2 H$-isomer

Table 1 Reagents, reaction conditions, and products of alkylation and acylation reactions of the norbornadiene-fused pyrazole 3, and $\delta_{\mathrm{C} 3}$ values of fused pyrazoles

R	Reagents and conditions	Products $\left(\right.$ yield $(\%)$ and $\left.\delta_{\mathrm{C} 3}\right)$
Me	MeI, $\mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}$	$\mathbf{5}\left(62, \delta_{\mathrm{C} 3} 121.7\right)+\mathbf{1 0}\left(34, \delta_{\mathrm{C} 3} 130.7\right)$
Et	$\mathrm{Et}_{3} \mathrm{OBF} \mathrm{F}_{4}, \mathrm{CH} \mathrm{Cl}_{2} \mathrm{Cl}, \mathrm{rt}, 12 \mathrm{~h}$	$\mathbf{6}(1)+\mathbf{1 1}\left(66, \delta_{\mathrm{C} 3} 130.6\right)$
PhNHCO	$\mathrm{PhNCO}, \mathrm{PhH}, \mathrm{rt}, 18 \mathrm{~h}$	$\mathbf{7}\left(90, \delta_{\mathrm{C} 3} 118.7\right)$
PhCO	$\mathrm{PhCOCl}, \mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}$	$\mathbf{8}\left(68, \delta_{\mathrm{C} 3} 119.6\right)$
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCl}, \mathrm{NaH}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}$	$\mathbf{9}\left(60, \delta_{\mathrm{C} 3} 119.2\right)$
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}$	$\mathbf{1 2}\left(41, \delta_{\mathrm{C} 3} 137.6\right)$
H		$\mathbf{3}\left(\delta_{\mathrm{C} 3} 119.3\right)$

Table 2 Electrophilic reactions of norbornadiene-fused pyrazoles

Pyrazole	R	Electrophile	Products (yield (\%))
3	H	Br_{2}	13 (32)
5	Me	Br_{2}	14 (64)
7	CONHPh	Br_{2}	15 (92)
8	COPh	Br_{2}	$16 \text { (88) }$
3	H	ArSCl^{a}	$\mathbf{1 7}$ (53) + $\mathbf{1 8}$ or 19 (5)
5	Me	ArSCl^{a}	20 (66)
7	CONHPh	ArSCl^{a}	$\mathbf{2 1}(45)+\mathbf{2 2 : 2 3 (1 : 1 , 3 0)}$
8	COPh	ArSCl^{a}	$\mathbf{2 4}(31)+\mathbf{2 5}(15)+26(32)$
9	$\mathrm{COC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$	ArSCl^{a}	$27(3)+28(3)+29(57)$
11	Et	Br_{2}	$30 \text { (37) }$
12	$\mathrm{COC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$	Br_{2}	$31 \text { (81) }$
11	Et	ArSCl^{a}	32 (72)

${ }^{a} \mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$.
$3,5,7,8$

$13 \mathrm{R}=\mathrm{H}$
$14 R=M e$ $15 \mathrm{R}=\mathrm{CONHPh}$ $16 R=C O P h$

$$
\begin{array}{r}
3,5,7,8,9 \quad \xrightarrow[\mathrm{CC}_{4}]{\mathrm{ArSC}+} \\
\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}
\end{array}
$$

$\mathrm{R}=\mathrm{H}$	17
$\mathrm{R}=\mathrm{Me}$	20
$\mathrm{R}=\mathrm{CONHPh}$	21
$\mathrm{R}=\mathrm{COPh}$	24
$\mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{4}-\partial-\mathrm{NO}_{2}$	27

18

22
25
28

19

23
26
29

Scheme 3
from the $1 H$-isomer: the chemical shifts $\left(\delta_{\mathrm{C} 3}\right)$ at the 3-position of 2 H -isomers are shifted upfield compared with those of 1 H isomers.

Electrophilic addition reactions of norbornadiene-fused pyrazoles

Treatment of the $2 H$-indazoles $\mathbf{3}, \mathbf{5}, \mathbf{7}$, and $\mathbf{8}$ with bromine provided the skeletally rearranged adducts $\mathbf{1 3}, \mathbf{1 4}, \mathbf{1 5}$, and $\mathbf{1 6}$, respectively, in a regio- and stereoselective manner (Scheme 3, Table 2). Bromination of 9 seemed to give a similar rearranged adduct, but we could not purify the product due to contamination by some unknown products. The yields of $\mathbf{1 3}$ and $\mathbf{1 4}$ are moderate, but these are the only products we could isolate, and we could find no evidence for the formation of any other bromine adducts in spite of an extensive search. The stereochemistry of the two bromine atoms was deduced by the presence of a
long-range spin coupling between 5 - and $8-\mathrm{H}$ due to the W-arrangement in the ${ }^{1} \mathrm{H}$ NMR spectra. The assignments of the spin coupling were confirmed by the homo decoupling experiments as well as by the $\mathrm{H}-\mathrm{H}$ COSY spectra. The regiochemistry of the adducts was determined on the basis of the observation of the NOE between the protons at the 3 - and 4-positions by NOE difference spectroscopy.

Treatment of the pyrazole $\mathbf{3}$ with p-nitrobenzenesulfenyl chloride resulted in the regio- and stereoselective formation of the rearranged adduct $\mathbf{1 7}$ along with the formation of a trans adduct, either $\mathbf{1 8}$ or $\mathbf{1 9}$. Unfortunately the regiochemistry of the trans adduct is ambiguous. The reaction of the 2-methyl derivative 5 with the sulfenyl chloride gave only the rearranged adduct $\mathbf{2 0}$ in 66% yield. The reaction of the carbamoyl derivative 7 gave the rearranged adduct 21 along with the trans adducts $\mathbf{2 2}$ and 23. Substitution of the benzoyl group was found
to decrease the yield of the rearranged adduct $\mathbf{2 4}$, and the trans adducts $\mathbf{2 5}$ and $\mathbf{2 6}$ were formed in 15 and 32% yields, respectively. Furthermore, the p-nitrobenzoyl derivative 9 provided only a 3% yield of the rearranged adduct 27 , and the trans adduct 29 was produced as a major product whereas the yield of trans adduct $\mathbf{2 8}$ did not increase. The regiochemistry of the trans adducts 23, 26, and 29 as well as that of the rearranged adducts 17, 20, 21, 24, and 27 was determined on the basis of the observation of NOE between 3- and $4-\mathrm{H}$. The results of the chlorosulfenylation reactions indicated that the substitution of more electron-withdrawing groups on the nitrogen atom of the pyrazole ring would suppress the formation of skeletally rearranged adducts, in accordance with the increase in the yields of the trans adducts.

Similar to the reactions of 2 H -indazoles, 1 -ethyl- and 1-pnitrobenzoyl derivatives $\mathbf{1 1}$ and $\mathbf{1 2}$ reacted with bromine to give only the rearranged adducts $\mathbf{3 0}$ and 31, respectively (Scheme 4, Table 2). On treatment with p-nitrobenzenesulfenyl chloride, the 1 -ethyl derivative $\mathbf{1 1}$ gave only the rearranged adduct $\mathbf{3 2}$.

Scheme 4

Analysis of the mass spectrum suggested that a similar reaction with $\mathbf{1 2}$ also gave an adduct, but we could not determine the structure due to insolubility of the product in organic solvents.
A plausible mechanism for these reactions is shown in Scheme 5. The initially formed onium ion 33 ($\mathrm{E}=\mathrm{Br}$ or SAr) undergoes regioselective cleavage of the $\mathrm{C}-5-\mathrm{E}$ bond by the neighboring group participation of the pyrazole ring to afford the bridged 4 H -pyrazolium ion 34, which should lead to the rearranged product 35 . We did not observe the formation of the regioisomer 37 which is possibly formed via the bridged 3 H pyrazolium intermediate 36. Similarly, the regioselective formation of $\mathbf{4 0}$ in the reactions of the $1 H$-pyrazoles is explained by the intermediacy of the bridged $4 H$-pyrazolium ion 39 . Both reactions with 2 H - and 1 H -pyrazoles were suggested to proceed by the intervention of bridged 4 H -pyrazolium ions but not bridged 3 H -pyrazolium ions.

Isolation of trans adducts in the reactions of 2 H -pyrazoles with the sulfenyl chloride is probably due to the formation of a tight ion pair with a chloride ion for the episulfonium ion 33 $(\mathrm{E}=\mathrm{SAr}) .^{18-23}$ The formation of the tight ion pair as well as the substitution of electron-withdrawing groups would retard the participation of the neighboring pyrazole ring, and the production of trans adducts would be allowed. However, we could not figure out the reason why one of two trans adducts was preferentially formed in the chlorosulfenylation reactions.

In order to obtain knowledge of bridged pyrazolium ions, we performed ab initio (6-31G*) calculations on the norbornenyl cations 43 and 44 (Fig. 1). ${ }^{24}$ Calculations on both cations provided the optimized bridged structures 45 and 46 , respectively. No energy minimum was observed for the corresponding nonbridged structures 43 and 44 . The atomic distances between C-3a and C-4 of $\mathbf{4 5}(1.57 \AA)$ and between C-6 and C-7a of $\mathbf{4 6}$ $(1.59 \AA)$ clearly indicate the presence of bonding interactions between these atoms when compared with those of $\mathbf{3}$. The comparison of the total energies revealed that $\mathbf{4 5}$ is about 13 kcal mol^{-1} more stable than 46. Similar results are obtained for the calculations on the $1 H$-pyrazole derivatives. Structure optimization of $\mathbf{4 7}$ and $\mathbf{4 8}$ provided the bridged structures 49 and 50, respectively. The bridged 4 H -pyrazolium ion 49 was found to be more stable than $\mathbf{5 0}$ by $16 \mathrm{kcal} \mathrm{mol}^{-1}$. The relative

3
Total Energy $=-416.403495$ lartree
$4.5 \mathrm{kcal} / \mathrm{mot}$ more stable

45
Total Energy - - 416.777729 lartree
$13.1 \mathrm{kca} / / \mathrm{mol}$ more stable

47

4
Total Energy $-\mathbf{- 4 1 6 . 3 9 6 3 1 0 ~ t r a r t r e e ~}$

46
44

46
Total Energy $-\mathbf{- 4 I} 6.756847$ lartree

50

48

49
Total Energy - $-4 \mid 6.778834$ hartrec
$16.1 \mathrm{kca} / / \mathrm{mot}$ more stable

50
Total Energy - - 416.753236 liartree

Fig. 1 Total energies and selected atomic distances (\AA) of norbornadiene-fused pyrazoles and norbornenyl cations obtained by ab initio ($6-31 \mathrm{G}^{*}$) calculations.
stabilities of bridged intermediates obtained by these calculations are in good agreement with the observed regioselectivity for the formation of rearranged adducts.

In conclusion, we have demonstrated that the electrophilic addition reactions of norbornadiene-fused pyrazoles undergo regio- and stereoselective Wagner-Meerwein rearrangement, which is attributable to the neighboring group participation of the pyrazole ring accompanied by the regioselective formation of the bridged 4 H -pyrazolium ion intermediate.

Experimental

General

All the melting points were determined with a Yanagimoto hot-stage apparatus. IR spectra were obtained with a JEOL Diamond-20 spectrometer. NMR spectra were recorded with either a JEOL JNM-LA300 ($\left.{ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ or JEOL JNM-LA400 ($\left.{ }^{1} \mathrm{H}: 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$ spectrometer using TMS as internal standard. J-Values are given in Hz . Assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals are based on DEPT,
$\mathrm{H}-\mathrm{H}$ COSY, and $\mathrm{C}-\mathrm{H}$ COSY measurements. Mass spectra were measured with a Shimadzu GCMS-QP1000EX spectrometer operating in the electron impact mode (70 eV). High resolution mass spectra (HR-MS) were taken with a JEOL DX300 spectrometer. Elemental analyses were performed with a Perkin-Elmer Model 240 apparatus. MPLC separations were carried out by a YAMAZEN YFLC-600-10V system with a YAMAZEN Ultra Pack ${ }^{\text {TM }}$ Column (Si-40B, silica gel). Solvents were dried and purified by standard methods. Yields are based on isolated products with sufficient purity.

2-(p-Tolylsulfonyl)bicyclo[2.2.1] hepta-2,5-diene (1)

A solution of cyclopenta-1,3-diene ($3.77 \mathrm{~g}, 57 \mathrm{mmol}$) and p-tolylsulfonylethyne ($3.80 \mathrm{~g}, 21 \mathrm{mmol}$) in benzene (20 ml) was stirred at room temperature for 24 h under a nitrogen atmosphere. Solvent was removed and hexane was added to the residue. The resulting solid was collected by suction to give 2-tosylnorbornadiene ${ }^{8,9} \mathbf{1}(5.07 \mathrm{~g}, 98 \%)$ as a white solid (from hexane-ethyl acetate $2: 1), \mathrm{mp} 48-49^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3074$, $3003,2952,1597,1549,1306,1162,1142 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$2.08\left(1 \mathrm{H}, \mathrm{d}, J 6,7-\mathrm{H}_{\text {syn }}\right), 2.19\left(1 \mathrm{H}, \mathrm{d}, J 6,7-\mathrm{H}_{\text {antit }}\right), 2.43(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.62(2 \mathrm{H}, \mathrm{m}$, $5-$ and $6-\mathrm{H}), 7.31(2 \mathrm{H}, \mathrm{d}, J 8), 7.47(1 \mathrm{H}, \mathrm{d}, J 4,3-\mathrm{H}), 7.70(2 \mathrm{H}$, d, $J 8$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.6(\mathrm{Me}), 50.8(\mathrm{C}-1), 51.5(\mathrm{C}-4)$, 74.0 (C-7), 127.9, 129.8, 136.1, 141.0 (C-5 or C-6), 142.5 (C-6 or C-5), 144.2, 152.9 (C-3), 157.7 (C-2); $m / z 246$ ($\mathrm{M}^{+}, 10 \%$), 139 $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{SO}, 20\right), 91$ (tolyl, 100).

Cycloaddition reaction of the tosylnorbornadiene 1 with diazomethane

A solution of diazomethane prepared from N-nitroso- N methylurea ($1.03 \mathrm{~g}, 10 \mathrm{mmol}$) in diethyl ether (20 ml) was added at $0{ }^{\circ} \mathrm{C}$ to a solution of 2-tosylnorbornadiene $\mathbf{1}(492 \mathrm{mg}, 2$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$. The mixture was stirred at room temperature for 1 h and a small amount of acetic acid was added to destroy the excess diazomethane. The mixture was concentrated under vacuum and hexane was added to the residue. The resulting solid was collected by suction to give a mixture of exo and endo adducts 2a and 2b ($5: 1$) ($558 \mathrm{mg}, 97 \%$) as a white powder (from cyclohexane), decomp. ca. $115^{\circ} \mathrm{C}$ (Found: C, 62.2; H, 5.6; N, 9.9. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 62.5$; H, 5.6; $\mathrm{N}, 9.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2987,1594,1543,1493,1460$, 1427, 1311, 1298, 1290, 1147; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.74$ $\left(0.83 \mathrm{H}, \mathrm{d}, J 10, \mathbf{2 a} 8-\mathrm{H}_{\text {syn }}\right), 1.45\left(0.83 \mathrm{H}, \mathrm{d}, J 10, \mathbf{2 a} 8-\mathrm{H}_{\text {anti }}\right), 1.65$ $\left(0.17 \mathrm{H}, \mathrm{d}, J 9, \mathbf{2 b} 8-\mathrm{H}_{\text {syn }}\right), 2.39\left(0.17 \mathrm{H}, \mathrm{d}, J 9, \mathbf{2 b} 8-\mathrm{H}_{\text {anti }}\right), 2.48$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.64(0.83 \mathrm{H}, \mathrm{dt}, J 9$ and $2,2 \mathrm{a} 3 \mathrm{a}-\mathrm{H}), 2.78(0.83 \mathrm{H}, \mathrm{br}$ s, 2a $4-\mathrm{H}), 2.99(0.17 \mathrm{H}$, br s, 2b $4-\mathrm{H}), 3.13(0.17 \mathrm{H}$, dt, $J 9$ and 3, 2b 3a-H), $3.23(0.83 \mathrm{H}, \mathrm{br}$ s, 2a $7-\mathrm{H}), 3.63(0.17 \mathrm{H}$, br s, 2b $7-\mathrm{H})$, $3.99\left(0.17 \mathrm{H}\right.$, dd, $J 19$ and 3 , 2b $\left.3-\mathrm{H}_{\text {end }}\right), 4.15(0.17 \mathrm{H}$, dd, $J 19$ and 9, 2b $\left.3-\mathrm{H}_{\text {exo }}\right), 4.36\left(0.83 \mathrm{H}\right.$, dd, $J 19$ and 2, 2a $\left.3-\mathrm{H}_{\text {exo }}\right), 4.49$ $\left(0.83 \mathrm{H}, \mathrm{dd}, J 19\right.$ and $\left.9,2 \mathbf{2 a} 3-\mathrm{H}_{\text {endo }}\right), 5.83(0.17 \mathrm{H}, \mathrm{m}, \mathbf{2 b} 6-\mathrm{H})$, $6.08(0.17 \mathrm{H}, \mathrm{m}, \mathbf{2 b} 5-\mathrm{H}), 6.35(1.7 \mathrm{H}, \mathrm{m}, \mathbf{2 a} 5-\mathrm{and} 6-\mathrm{H}), 7.39$ $\left(2 \mathrm{H}, \mathrm{d}, J 8\right.$, tolyl), $7.84\left(2 \mathrm{H}, \mathrm{d}, J 8\right.$, tolyl); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 21.5,40.8,41.3,44.8,45.0,47.3,48.4,48.5,48.9$, $79.7,80.7,124.0,124.9,129.3,129.5,129.7,133.1,133.7$, 134.3, 136.0, 136.4, 138.4, 145.0; m/z $260\left(\mathrm{M}-\mathrm{N}_{2}, 1 \%\right), 195$ $\left(M-N_{2}-C_{6} H_{5}, 9\right), 139(T s, 9), 105\left(M-N_{2}-T s, 100\right)$.

4,7-Dihydro-4,7-methano-2H-indazole (3)

A mixture of the adducts $\mathbf{2 a}$ and $\mathbf{2 b}$ ($864 \mathrm{mg}, 3 \mathrm{mmol}$) and sodium hydride $(60 \%, 264 \mathrm{mg}, 6.6 \mathrm{mmol})$ in THF (14 ml) was stirred at room temperature for 24 h . Aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Pentane was added to the residue and the resulting solid was recrystallized from hexane to give the pyrazole 3 ($337 \mathrm{mg}, 85 \%$) as colorless needles, $\mathrm{mp} 101-102{ }^{\circ} \mathrm{C}$ (Found: C, $72.9 ; \mathrm{H}, 6.2 ; \mathrm{N}$, 21.1. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}$ requires C, 72.7; $\left.\mathrm{H}, 6.1 ; \mathrm{N}, 21.2 \%\right)$; $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3172,3116,3056,3039$, 2977, 2940, 2892, 1583, 1440, $1400 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.43\left(1 \mathrm{H}, \mathrm{d}, J 7,8-\mathrm{H}_{\text {syn }}\right), 2.56(1 \mathrm{H}$, $\left.\mathrm{d}, J 7,8-\mathrm{H}_{\text {anti }}\right), 3.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$ or $7-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}$ or $4-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3,5-\mathrm{H}$ or $6-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3,6-\mathrm{H}$ or $5-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 9.24(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 43.2 (C-4 or C-7), 44.5 (C-7 or C-4), 70.4 (C-8), 119.3 (C-3), 131.0 (C-3a), 142.0 (C-5 or C-6), 144.4 (C-6 or C-5), 171.3 (C-7a); m/z $132\left(\mathrm{M}^{+}, 59 \%\right)$, 131 ($\mathrm{M}-\mathrm{H}, 100$), $105\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3}, 37\right)$.

Reaction of the pyrazole 3 with methyl iodide

A solution of the pyrazole $3(132 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (5 ml) was added to a suspension of $\mathrm{NaH}(60 \%, 38 \mathrm{mg}, 1.6 \mathrm{mmol})$ in THF (5 ml) at room temperature, and the mixture was stirred at room temperature for 20 min . Methyl iodide ($257 \mathrm{mg}, 1.8$ mmol) was added to the mixture. The reaction mixture was then quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic phase was washed with water $(10 \mathrm{ml})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was separated by MPLC (ethyl acetate) to give 4,7-
dihydro-4,7-methano-2-methyl- 2 H -indazole (5) ($90 \mathrm{mg}, 62 \%$) and 4,7-dihydro-4,7-methano-1-methyl-1 H -indazole (10) (49 $\mathrm{mg}, 34 \%$).

5: Colorless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3066,2992,2970,1444,1427$, 1375,$1215 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7,8-\mathrm{H}_{s y n}\right)$, $2.53\left(1 \mathrm{H}, \mathrm{dt}, J 7\right.$ and $\left.2,8-\mathrm{H}_{\text {anti }}\right), 3.73(1 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.79(2 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}$ and $7-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, J 5$ and $2,5-\mathrm{H}$ or $6-\mathrm{H}), 6.77(1 \mathrm{H}$, dd, $J 5$ and $2,6-\mathrm{H}$ or $5-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) $37.8(\mathrm{Me}), 43.4(\mathrm{C}-4$ or C-7), 44.7 (C-7 or C-4), 70.5 (C-8), 121.7 (C-3), 131.3 (C-3a), 142.2 (C-5 or C-6), 144.4 (C-6 or C-5), $170.2(\mathrm{C}-7 \mathrm{a}) ; m / z 146\left(\mathrm{M}^{+}, 100 \%\right), 145(\mathrm{M}-\mathrm{H}, 38)$. Picrate: yellow needles (from methanol), mp $156-157^{\circ} \mathrm{C}$ (Found: C, 48.3; H, 3.7; N, 18.8. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{7}$ requires C, 48.0; H, 3.5; N, 18.7\%).

10: Colorless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3070,2991,2972,1441$, $1414,1295,1273 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.51(1 \mathrm{H}$, br d, $J 7$, $\left.8-\mathrm{H}_{\text {syn }}\right), 2.58\left(1 \mathrm{H}, \mathrm{dt}, J 7\right.$ and $\left.2,8-\mathrm{H}_{\text {anti }}\right), 3.74(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $7-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.70(1 \mathrm{H}, \mathrm{dd}, J 5$ and $2,5-\mathrm{H}$ or $6-\mathrm{H})$, $6.89(1 \mathrm{H}$, dd, $J 5$ and $2,6-\mathrm{H}$ or $5-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.2(\mathrm{Me}), 44.5(\mathrm{C}-4$ or $\mathrm{C}-7), 44.8(\mathrm{C}-7$ or C-4), 73.6 (C-8), 130.7 (C-3), 135.4 (C-3a), 141.4 (C-5 or C-6), 146.8 (C-6 or C-5), 161.6 (C-7a); m/z 146 ($\mathrm{M}^{+}, 79 \%$), 145 $(\mathrm{M}-\mathrm{H}, 100), 131(\mathrm{M}-\mathrm{Me}, 30)$. Picrate: yellow needles (from methanol), mp 145-146 ${ }^{\circ} \mathrm{C}$ (Found: C, 48.3; H, 3.4; N, 18.85. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{7}$ requires C, 48.0; H, 3.5; N, 18.7\%).

Reaction of the pyrazole 3 with the Meerwein reagent

A solution of the pyrazole $3(264 \mathrm{mg}, 2 \mathrm{mmol})$ and triethyloxonium tetrafluoroborate ${ }^{25}(c a .1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was stirred at room temperature for 24 h . Aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$ was added to the reaction mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{ml})$. The combined organic phase was washed with water and brine over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was separated by TLC (silica gel, benzene-ethyl acetate 1:1) to give 1 -ethyl-4,7-dihydro-4,7-methano-1 H -indazole (11) ($212 \mathrm{mg}, 66 \%$) as a colorless oil and 2-ethyl-4,7-dihydro-4,7-methano- 2 H -indazole (6) which was isolated as the picrate ($11 \mathrm{mg}, 1 \%$).

Picrate of 6: yellow needles (from methanol), mp 157-158 ${ }^{\circ} \mathrm{C}$ (Found: C, 49.3; H, 3.7; N, 18.2. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{7}$ requires C, 49.4; H, 3.9; N, 18.0\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3099,2985,2946,1610,1433$, $1414,1369,1319,1273 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.51(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me}), 2.62\left(1 \mathrm{H}, \mathrm{dm}, J 8,8-\mathrm{H}_{\text {syn }}\right), 2.67\left(1 \mathrm{H}, \mathrm{dm}, J 8,8-\mathrm{H}_{\text {anti }}\right), 3.96$ $(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{H}$ or $7-\mathrm{H}), 4.28(1 \mathrm{H}$, br s, $7-\mathrm{H}$ or $4-\mathrm{H}), 4.36(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 6.87(1 \mathrm{H}, \mathrm{dm}, J 5,5-\mathrm{H}$ or $6-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3,6-\mathrm{H}$ or $5-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 9.01(2 \mathrm{H}, \mathrm{s})$.
11: colorless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3074,2989,2970,1531,1462$, $1450,1432,1295 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.43(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$, $2.55\left(1 \mathrm{H}, \mathrm{d}, J 7,8-\mathrm{H}_{\text {syn }}\right), 2.61\left(1 \mathrm{H}, \mathrm{d}, J 7,8-\mathrm{H}_{\text {anti }}\right), 3.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $4-\mathrm{H}$ or $7-\mathrm{H}), 3.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}$ or $4-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2}\right)$, $6.73(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3,5-\mathrm{H}$ or $6-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{dd}, J 5$ and 3 , $6-\mathrm{H}$ or $5-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.8(\mathrm{Me})$, 44.6 (C-4 or C-7), 44.9 (C-7 or C-4), $45.7\left(\mathrm{CH}_{2}\right)$, 73.3 (C-8), 130.6 (C-3), 135.4 (C-3a), 141.3 (C-5 or C-6), 147.0 (C-6 or C-5), 160.7 (C-7a); m/z $160\left(\mathrm{M}^{+}, 80 \%\right), 145$ (M - Me, 100), 131 ($M-E t, 92$). Picrate: yellow prisms (from methanol), mp 141$142{ }^{\circ} \mathrm{C}$ (Found: C, 49.5; H, 3.7; N, 17.9. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{7}$ requires C, 49.4; H, 3.9; N, 18.0\%).

4,7-Dihydro-4,7-methano-2-(phenylcarbamoyl)-2 H -indazole (7)

A solution of the pyrazole $3(40 \mathrm{mg}, 0.3 \mathrm{mmol})$ and phenyl isocyanate ($40 \mathrm{mg}, 0.34 \mathrm{mmol}$) in benzene (10 ml) was stirred at room temperature for 24 h . The mixture was concentrated and the resulting solid was collected by suction to give the carbamoylpyrazole 7 ($68 \mathrm{mg}, 90 \%$) as colorless needles (from hexane-ethyl acetate $1: 1$), $\mathrm{mp} 169-170^{\circ} \mathrm{C}$ (Found: C, 71.6 ; $\mathrm{H}, 5.2 ; \mathrm{N}, 16.7 . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires C, 71.7; H, 5.2; $\mathrm{N}, 16.7 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3284,3135,3018,2973,2933,1702,1691,1678$, $1652,1593,1562,1546,1529,1517,1502,1444,1382,1348$,

1317, 1299, 1240, 1228; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.44(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\left.8,8-\mathrm{H}_{\text {syn }}\right), 2.60\left(1 \mathrm{H}, \mathrm{dt}, J 8\right.$ and $\left.2,8-\mathrm{H}_{\text {anti }}\right), 3.81(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2,4-$ H or $7-\mathrm{H}), 3.86(1 \mathrm{H}, \mathrm{br}$ d, $J 2,7-\mathrm{H}$ or $4-\mathrm{H}), 6.70(1 \mathrm{H}$, dd, $J 5$ and $3,5-\mathrm{H}$ or $6-\mathrm{H}), 6.79(1 \mathrm{H}$, dd, $J 5$ and $3,6-\mathrm{H}$ or $5-\mathrm{H}), 7.12$ $(1 \mathrm{H}, \mathrm{tt}, J 8$ and 1$), 7.35(2 \mathrm{H}, \mathrm{tt}, J 8$ and 1$), 7.56(2 \mathrm{H}, \mathrm{dt}, J 8$ and 1), $7.72(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 42.9 (C-4 or C-7), 44.2 (C-7 or C-4), 68.0 (C-8), 118.7 (C-3), $119.5,124.1,129.1,134.3$ (C-3a), 137.3, 140.7 (C-5 or C-6), 144.1 (C-6 or C-5), 148.2 (CO), 173.5 (C-7a); m/z 251 (M^{+}, 19\%), 132 (M - PhNCO, 100).

2-Benzoyl-4,7-dihydro-4,7-methano-2H-indazole (8)

A solution of the pyrazole $3(132 \mathrm{mg}, 1 \mathrm{mmol})$ in THF was added to a suspension of $\mathrm{NaH}(60 \%, 60 \mathrm{mg}, 1.5 \mathrm{mmol})$ in THF (2 ml), and the mixture was stirred at room temperature for 30 min. Benzoyl chloride ($169 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added to the mixture and stirring was continued for 1 h . The reaction mixture was quenched with water (10 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic phase was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent, the residue was separated by TLC (silica gel, benzene) to give the benzoylpyrazole $8(160 \mathrm{mg}, 68 \%)$, colorless prisms (from hexane), mp 78-79.5 ${ }^{\circ} \mathrm{C}$ (Found: C, 76.0; H, 5.1; N, 11.9. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires C, $\left.76.25 ; \mathrm{H}, 5.1 ; \mathrm{N}, 11.9 \%\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3126, 3087, 3059, 2991, 2968, 2931, 1678 (CO), 1639, 1450, 1377, 1344, 1298; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.42(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8$, $\left.8-\mathrm{H}_{s y n}\right), 2.58\left(1 \mathrm{H}, \mathrm{dt}, J 8\right.$ and $\left.2,8-\mathrm{H}_{\text {anti }}\right), 3.82(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ or $7-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ or $4-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3,5-\mathrm{H}$ or $6-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3,6-\mathrm{H}$ or $5-\mathrm{H}), 7.47(2 \mathrm{H}, \mathrm{tt}, J 8$ and 2), $7.55(1 \mathrm{H}, \mathrm{tt}, J 8$ and 2$), 7.83(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.01(2 \mathrm{H}, \mathrm{dt}, J 8$ and 2); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 42.6$ (C-4 of C-7), 44.1 (C-7 or C-4), 66.5 (C-8), 119.6 (C-3), 127.9, 130.8, 132.1, 132.8 (C-3a), 134.5, 140.6 (C-5 or C-6), 143.3 (C-6 or C-5), 167.1 (CO), 175.5 (C-7a); m/z 236 (${ }^{+}$, 5\%), 131 (M - PhCO, 15), 105 (PhCO , 100).

4,7-Dihydro-4,7-methano-2-(\boldsymbol{p}-nitrobenzoyl)-2H-indazole (9)

By a similar procedure to that described above, the reaction of pyrazole 3 ($132 \mathrm{mg}, 1 \mathrm{mmol}$) and p-nitrobenzoyl chloride (220 $\mathrm{mg}, 1.2 \mathrm{mmol})$ provided the 2 -(p-nitrobenzoyl)pyrazole 9 (186 $\mathrm{mg}, 66 \%$), colorless plates (from ethanol), $\mathrm{mp} 161-162^{\circ} \mathrm{C}$ (Found: C, $64.0 ; \mathrm{H}, 3.85 ; \mathrm{N}, 15.0 . \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.05$; $\mathrm{H}, 3.9 ; \mathrm{N}, 14.9 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3118,3080,3054,2978,2943$, 1671 (CO), 1604, 1525, 1518, 1450, 1409, 1378, 1336, 1301; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.43\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8,8-\mathrm{H}_{s y n}\right), 2.61(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J 8,8-\mathrm{H}_{\text {antit }}\right), 3.82(1 \mathrm{H}$, br s, $7-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 6.68(1 \mathrm{H}$, dd, $J 5$ and $3,6-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{dd}, J 5$ and $3,5-\mathrm{H}), 7.84(1 \mathrm{H}, \mathrm{s}$, C-3), 8.18 ($2 \mathrm{H}, \mathrm{dd}, J 7$ and 2), 8.31 ($2 \mathrm{H}, \mathrm{dd}, J 7$ and 2); NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 42.5(\mathrm{C}-4)$, 44.0 (C-7), 66.2 (C-8), 119.2 (C-3), 122.9, 131.7, 135.3 (C-3a), 138.5, 140.4 (C-5), 143.2 (C-6), 149.4, 165.0 (CO), 176.2 (C-7a); $m / z 281\left(\mathrm{M}^{+}, 25 \%\right), 150\left(\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}, 100\right)$.

4,7-Dihydro-4,7-methano-1-(\boldsymbol{p}-nitrobenzoyl)-1 \boldsymbol{H}-indazole (12)

A solution of p-nitrobenzoyl chloride ($191 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added to a solution of the pyrazole 3 (132 $\mathrm{mg}, 1 \mathrm{mmol}$) and triethylamine ($111 \mathrm{mg}, 1.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml})$ during 30 min at room temperature. The mixture was stirred at room temperature for 1 h and water (10 ml) was added. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic phase was washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the resulting solid was recrystallized from ethyl acetate to give 1-(p-nitrobenzoyl)pyrazole $\mathbf{1 2}$ ($114 \mathrm{mg}, 41 \%$) as yellow needles, $\mathrm{mp} 136-137^{\circ} \mathrm{C}$ (Found: C, 64.0; H, 3.9; $\mathrm{N}, 15.2 . \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 64.05; $\mathrm{H}, 3.9 ; \mathrm{N}$, $14.9 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3110$, 3079, 3052, 2977, 2940, 1691 (CO), 1602, 1523, 1459, 1408, 1390, 1348, 1311; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) 2.74\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\text {syn }}\right.$ and $\left.8-\mathrm{H}_{\text {anti }}\right), 3.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$, $4.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{dd}, J 5$ and $2,5-\mathrm{H}$ or $6-\mathrm{H}), 7.01$ (1 H , dd, $J 5$ and 2, $5-\mathrm{H}$), 7.44 ($1 \mathrm{H}, \mathrm{s}, \mathrm{C}-3$), 8.28 ($2 \mathrm{H}, \mathrm{dm}, J 9$), $8.33(2 \mathrm{H}, \mathrm{dm}, J 9) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 44.6$ (C-4), $48.0(\mathrm{C}-7)$, 75.4 (C-8), 123.0, 132.4, 137.5, 137.6 (C-3), 142.7 (C-5 or C-6), 142.8 (C-3a), 146.1 (C-6 or C-5), $150.0,164.8$ (CO), 166.8 (C-7a); m/z $281\left(\mathrm{M}^{+}, 18 \%\right), 150\left(\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}, 100\right)$.

General procedure for the bromination reaction of the norbornadiene-fused pyrazoles

A solution of bromine ($80 \mathrm{mg}, 0.5 \mathrm{mmol}$) in carbon tetrachloride (2 ml) was added to a solution of a norbornadienefused pyrazole (0.5 mmol) in carbon tetrachloride (3 ml) and the mixture was stirred at room temperature for 3 h . Dichloromethane was added and the organic phase was washed with aqueous sodium thiosulfate and aqueous sodium hydrogen carbonate, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the resulting solid was collected by suction. Yields of the products are listed in Table 2.

For the isolations of $\mathbf{1 3}$ and $\mathbf{3 0}$, the residues were separated by chromatography (silica gel, benzene-ethyl acetate $1: 1$) and TLC (silica gel, benzene), respectively.

5-exo,8-anti-Dibromo-4,5,6,7-tetrahydro-4,7-methano-2H-
indazole (13). White powder (from cyclohexane); mp 130$131{ }^{\circ} \mathrm{C}$ (Found: C, $32.65 ; \mathrm{H}, 2.8 ; \mathrm{N}, 9.85 . \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2}$ requires C, 32.9; H, 2.8; N, 9.6\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3182,3012,2987,2951$, $1577,1452,1439,1412 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.29(1 \mathrm{H}, \mathrm{dd}$, $J 13$ and $\left.8,6-\mathrm{H}_{\text {endo }}\right), 2.89\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.65(1 \mathrm{H}$, d, $J 4,7-\mathrm{H}), 3.74(1 \mathrm{H}$, ddd, $J 8,4$, and $1,5-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $4-\mathrm{H}), 4.17\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{H}_{\text {syn }}\right), 7.28(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 10.15(1 \mathrm{H}, \mathrm{br}$, NH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 36.8 (C-6), 45.4 (C-5), 46.6 (C-7), 51.3 (C-4), 55.7 (C-8), 120.6 (C-3), 122.6 (C-3a), 158.1 (C-7a); $m / z ~ 294 / 292 / 290\left(\mathrm{M}^{+}, 3 / 5 / 3 \%\right), 132(3,50), 105\left(3-\mathrm{C}_{2} \mathrm{H}_{3}, 100\right)$.

5-exo,8-anti-Dibromo-4,5,6,7-tetrahydro-4,7-methano-2-methyl- 2 H -indazole (14). Colorless prisms (from ethyl acetate); mp 184-185 ${ }^{\circ} \mathrm{C}$ (Found: C, 35.5; H, 3.15; N, 9.3. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}$ requires $\mathrm{C}, 35.3 ; \mathrm{H}, 3.3 ; \mathrm{N}, 9.15 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3013,2996$, 2973, 2946, 1439, 1389, 1278, 1259, 1247; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.26\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.8,6-\mathrm{H}_{\text {endo }}\right), 2.85(1 \mathrm{H}, \mathrm{dt}, J 13$ and 4 , $\left.6-\mathrm{H}_{\text {exo }}\right), 3.58(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H}), 3.73(1 \mathrm{H}$, ddd, $J 8,4$, and $1,5-\mathrm{H})$, $3.76(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.15\left(1 \mathrm{H}, \mathrm{d}, J 1,8-\mathrm{H}_{\text {syn }}\right), 7.05$ ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$); NOE observed between 3 -H and $4-\mathrm{H} ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 36.9 (C-6), 38.7 (Me), 45.7 (C-5), 46.8 (C-7), 51.5 (C-4), 55.7 (C-8), 122.2 (C-3), 122.9 (C-3a), 158.2 (C-7a); $m / z 308 / 306 / 304\left(\mathrm{M}^{+}, 5 / 9 / 5 \%\right)$, $225(\mathrm{M}-\mathrm{Br}, 79), 132(\mathrm{M}-$ $\mathrm{Me}-\mathrm{Br}_{2}, 19$).

5-exo,8-anti-Dibromo-4,5,6,7-tetrahydro-4,7-methano-2-(phenylcarbamoyl)-2 H -indazole (15). White powder (from ethanol); mp $160-161^{\circ} \mathrm{C}$ (Found: C, 43.7; H, 3.05; N, 10.3. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}$ requires C, 43.8; H, 3.2; N, 10.2\%); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3344,3030,2991,2951,1724,1712,1594,1529,1446$, $1349,1315,1230 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.36(1 \mathrm{H}, \mathrm{dd}, J 13$ and $\left.8,6-\mathrm{H}_{\text {endo }}\right), 2.95\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.61(1 \mathrm{H}, \mathrm{d}, J 4$, $7-\mathrm{H}), 3.81(1 \mathrm{H}$, ddd, $J 8,4$, and $1,5-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.21$ $\left(1 \mathrm{H}, \mathrm{br}, 8-\mathrm{H}_{\text {syn }}\right), 7.16(1 \mathrm{H}, \mathrm{t}, J 7), 7.38(2 \mathrm{H}, \mathrm{t}, J 7), 7.56(2 \mathrm{H}, \mathrm{d}$, $J 7), 8.00(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.85(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$; NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 36.7$ (C-6), 44.1 (C-5), 46.5 (C-7), 51.0 (C-4), 54.8 (C-8), 119.6, 120.4 (C-3), 124.7, 126.0 (C-3a), 129.3, 136.5, 147.0 (CO), 161.4 (C-7a); m/z 413/411/409 ($\left.\mathrm{M}^{+}, 3 / 5 / 3 \%\right), 294 / 292 / 290(\mathrm{M}-\mathrm{PhNCO}, 9 / 19 / 9)$, 213/211 (M - PhNCO - Br, 57/58), 132 ($\mathrm{M}-\mathrm{PhNCO}-\mathrm{Br}_{2}$, 24), 119 ($\mathrm{PhNCO}, 100$).

2-Benzoyl-5-exo,8-anti-dibromo-4,5,6,7-tetrahydro-4,7-

 methano-2H-indazole (16). Colorless prisms (from diethyl ether); $\mathrm{mp} 149-150^{\circ} \mathrm{C}$ (Found: C, $45.6 ; \mathrm{H}, 2.8 ; \mathrm{N}, 7.1$. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}$ requires C, 45.5; H, 3.05; N, 7.0\%); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3050,3000,2950,1687,1491,1348,1244 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$,$\left.\mathrm{CDCl}_{3}\right) 2.39\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.8,6-\mathrm{H}_{\text {endo }}\right), 2.95(1 \mathrm{H}, \mathrm{dt}, J 14$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.63(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H}), 3.86(1 \mathrm{H}$, ddd, $J 8,4$, and 1 , $5-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.22\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.8-\mathrm{H}_{\text {syn }}\right), 7.45(2 \mathrm{H}, \mathrm{t}$, $J 7.5), 7.61(1 \mathrm{H}, \mathrm{t}, J 7.5), 8.03(2 \mathrm{H}, \mathrm{d}, J 7.5), 8.12(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ;$ NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 36.7$ (C-6), 43.8 (C-5), 46.5 (C-7), 50.8 (C-4), 54.4 (C-8), 121.7 (C-3), 126.2 (C-3a), 128.1, 131.1, 131.5, 133.0, 163.5 (C-7a), 166.6 (CO); $m / z 398 / 396 / 394\left(\mathrm{M}^{+}, 2 / 4 / 2 \%\right), 315(\mathrm{M}-\mathrm{Br}, 24), 290$ $(\mathrm{M}-\mathrm{PhCO}, 5), 235\left(\mathrm{M}-\mathrm{Br}_{2}, 5\right), 132\left(\mathrm{M}-\mathrm{PhCO}-\mathrm{Br}_{2}, 6\right)$, 105 (PhCO, 100).

5-exo,8-anti-Dibromo-1-ethyl-4,5,6,7-tetrahydro-4,7-

 methano-1 H -indazole (30). White powder (from hexane); mp $60-61^{\circ} \mathrm{C}$ (Found: C, $37.6 ; \mathrm{H}, 3.8 ; \mathrm{N}, 8.9 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2}$ requires C, $37.5 ; \mathrm{H}, 3.8 ; \mathrm{N}, 8.75 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2999,2978,2949$, 1531, 1442, 1433, 1387, 1253; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.44(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{Me}), 2.14\left(1 \mathrm{H}, \mathrm{ddd}, J 13,8\right.$, and $\left.1,6-\mathrm{H}_{\text {endo }}\right), 2.85(1 \mathrm{H}, \mathrm{dt}$, $J 13$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.67(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $7-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $4-\mathrm{H}), 4.12\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2}\right), 4.19\left(1 \mathrm{H}, \mathrm{br}, 8-\mathrm{H}_{\text {syn }}\right), 7.21(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H})$; NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 15.5(\mathrm{Me}), 36.1(\mathrm{C}-6), 45.0(\mathrm{C}-7), 45.9\left(\mathrm{CH}_{2}\right), 46.6(\mathrm{C}-5)$, 51.8 (C-4), 55.4 (C-8), 124.2 (C-3a), 130.4 (C-3), 146.7 (C-7a); $m / z 322 / 320 / 318\left(\mathrm{M}^{+}, 3 / 5 / 3 \%\right)$, 239 ($\mathrm{M}-\mathrm{Br}, 39$), $160(\mathrm{M}-$ $\left.\mathrm{Br}_{2}, 13\right), 133\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3}-\mathrm{Br}_{2}, 100\right)$.
5-exo,8-anti-Dibromo-4,5,6,7-tetrahydro-4,7-methano-1-(p -

 nitrobenzoyl)-1 H -indazole (31). Colorless prisms (from carbon tetrachloride-chloroform 3:1); mp 203-204 ${ }^{\circ} \mathrm{C}$ (Found: C, 41.1; $\mathrm{H}, 2.5 ; \mathrm{N}, 9.3 . \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 40.85; H, 2.5; $\mathrm{N}, 9.5 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3070,3026,1699,1603,1518,1469$, $1392,1319,1253 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.31(1 \mathrm{H}, \mathrm{dd}, J 14$ and 8 , $\left.6-\mathrm{H}_{\text {endo }}\right), 2.96\left(1 \mathrm{H}, \mathrm{dt}, J 14\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.68(1 \mathrm{H}, \mathrm{ddd}, J 8,4$, and $1,5-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{t}, J 3,7-\mathrm{H}), 4.32(1 \mathrm{H}$, br s, $8-\mathrm{H}_{\text {syn }}$), $7.57(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.31(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2$), 8.35(2 \mathrm{H}$, $\mathrm{dt}, J 9$ and 2); NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 34.9 (C-6), 43.4 (C-5), 49.1 (C-7), 51.4 (C-4), 55.7 (C-8), 123.2, 129.9 (C-3a), 132.7, 136.3, 136.6 (C-3), 150.3, 151.9, $164.3(\mathrm{CO}) ; m / z 443 / 441 / 439\left(\mathrm{M}^{+}, 2 / 4 / 2 \%\right), 360(\mathrm{M}-\mathrm{Br}$, 24), $281\left(\mathrm{M}-\mathrm{Br}_{2}, 2\right), 150\left(\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}, 100\right)$.
General procedure for the reaction of the norbornadiene-fused

 pyrazoles with \boldsymbol{p}-nitrobenzenesulfenyl chlorideA solution of a norbornadiene-fused pyrazole (0.5 mmol) and p-nitrobenzenesulfenyl chloride ($114 \mathrm{mg}, 0.6 \mathrm{~mol}$) in $\mathrm{CCl}_{4}(10$ ml) was stirred at room temperature for 24 h . After removal of the solvent, the residue was separated by TLC (silica gel, benzene-ethyl acetate 1:1) for 3 and 11, TLC (silica gel, hexane-ethyl acetate $3: 1$) for $\mathbf{5}$, and MPLC (benzene) for $\mathbf{7 , 8}$, and 9 , respectively. Products and yields are listed in Table 2.

5-exo-Chloro-4,5,6,7-tetrahydro-4,7-methano-8-anti-(p-nitro-phenylsulfenyl)-2 H -indazole (17). Colorless needles (from ethyl acetate); mp 223-224 ${ }^{\circ} \mathrm{C}$ (Found: C, 52.4; H, 3.8; N, 13.0. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C, $\left.52.3 ; \mathrm{H}, 3.8 ; \mathrm{N}, 13.1 \%\right) ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3268,3101,3053$, 2985, 1593, 1575, 1509, 1409, 1400; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right) 2.26\left(1 \mathrm{H}\right.$, ddd, $J 13,8$, and $\left.1,6-\mathrm{H}_{\text {endo }}\right)$, $2.63\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.70(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H}), 3.76$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.92(1 \mathrm{H}$, ddd, $J 8,4$, and $1,5-\mathrm{H}), 4.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.8-\mathrm{H}_{\text {syn }}\right), 7.51(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.64(2 \mathrm{H}, \mathrm{dd}, J 9$ and 2$), 8.20(2 \mathrm{H}, \mathrm{dd}$, $J 9$ and 2), $11.61(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$; NOE observed between 3-H and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 37.5$ (C-6), 43.8 (C-7), 50.4 (C-4), 59.1 (C-5), 61.9 (C-8), 120.8 (C-3), 121.9 (C-3a), 124.0, 126.9, 144.7, 147.0, 159.6 (C-7a); m/z 323/321 ($\mathrm{M}^{+}, 1 / 3 \%$), 286 ($\mathrm{M}-$ $\mathrm{Cl}, 1), 167(\mathrm{M}-\mathrm{ArS}, 9), 132(\mathrm{M}-\mathrm{ArSCl}, 10), 131(\mathrm{M}-$ $\mathrm{ArSCl}-\mathrm{H}, 56), 119\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}, 100\right)$.

5-endo-Chloro-4,5,6,7-tetrahydro-4,7-methano-6-exo-(p -

 nitrophenylsulfenyl) 2 H -indazole (18) or 6 -endo-chloro-4,5,6,7-tetrahydro-4,7-methano-5-exo-(p-nitrophenylsulfenyl)-2Hindazole (19). White powder; $\mathrm{mp} 70-72^{\circ} \mathrm{C}$ (HR-MS found:321.0343. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires 321.0346$)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3371, 3187, 3062, 2920, 1594, 1577, 1512, 1479, 1444, 1334; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.33\left(1 \mathrm{H}, \mathrm{dm}, J 10,8-\mathrm{H}_{\text {syn }}\right), 2.40(1 \mathrm{H}, \mathrm{dt}$, $J 10$ and $2,8-\mathrm{H}_{\text {antit }}$), $3.24(1 \mathrm{H}, \mathrm{t}, J 4,184-\mathrm{H}$ or $197-\mathrm{H}), 3.47(1 \mathrm{H}$, br s, $187-\mathrm{H}$ or $194-\mathrm{H}$), 3.68 ($1 \mathrm{H}, \mathrm{d}, J 4, \mathbf{1 8} 6-\mathrm{H}$ or $\mathbf{1 9} 5-\mathrm{H}$), 4.38 ($1 \mathrm{H}, \mathrm{t}, J 4,185-\mathrm{H}$ or $196-\mathrm{H}$), $7.43(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{dd}$, $J 7$ and 2), 8.16 (2 H , dd, $J 7$ and 2); $m / z 323 / 321\left(\mathrm{M}^{+}, 6 / 15 \%\right)$, $286(\mathrm{M}-\mathrm{Cl}, 14), 167(\mathrm{M}-\mathrm{ArS}, 49), 132(\mathrm{M}-\mathrm{ArSCl}, 18)$, $131(\mathrm{M}-\mathrm{ArSCl}-\mathrm{H}, 100), 119\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}, 9\right)$.

5-exo-Chloro-4,5,6,7-tetrahydro-4,7-methano-2-methyl-8-anti-(\boldsymbol{p}-nitrophenylsulfeny) $)$ - \mathbf{H}-indazole (20). White powder (from ethanol); mp 179-180 ${ }^{\circ} \mathrm{C}$ (Found: C, $53.9 ; \mathrm{H}, 4.25 ; \mathrm{N}$, 12.6. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C, $53.65 ; \mathrm{H}, 4.2$; $\mathrm{N}, 12.5 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3100,3022,2989,1593,1579,1512,1503,1477$, $1439,1417,1389 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.28(1 \mathrm{H}$, ddd, $J 13,8$, and $\left.1,6-\mathrm{H}_{\text {endo }}\right), 2.68\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.63(1 \mathrm{H}, \mathrm{d}$, $J 4,7-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.82-3.87(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}$ and $8-\mathrm{H}_{\text {syn }}$), $7.07(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.41(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2$), 8.23$ ($2 \mathrm{H}, \mathrm{dt}, J 8$ and 2); NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H}$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.7(\mathrm{C}-6), 38.7(\mathrm{Me}), 44.8(\mathrm{C}-7), 51.4$ (C-4), 58.5 (C-5), 63.0 (C-8), 122.5 (C-3), 123.6 (C-3a), 124.1, 127.0, 145.5, 147.1, 160.7 (C-7a); m/z 337/335 ($\mathrm{M}^{+}, 1 / 3 \%$), 300 (M - Cl, 2), 181 ($\mathrm{M}-\mathrm{ArS}, 11$), 146 ($\mathrm{M}-\mathrm{ArSCl}, 10$), 145 $(\mathrm{M}-\mathrm{ArSCl}-\mathrm{H}, 56), 133\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}, 100\right), 119\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}, 14\right)$.

5-exo-Chloro-4,5,6,7-tetrahydro-4,7-methano-8-anti-(p-nitro-phenylsulfenyl)-2-(N -phenylcarbamoyl)-2H-indazole (21). White powder (from ethanol); mp 191-192 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.4; H, 3.8; $\mathrm{N}, 12.8 . \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires C, 57.2; H, 3.9; N, 12.7\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3365,3095,3032,3001,2951,1730,1595,1579$, $1529,1510,1446,1352,1340 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.39(1 \mathrm{H}$, ddd, $J 13,8$, and $\left.1,6-\mathrm{H}_{\text {endo }}\right), 2.81\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right)$, $3.66(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H}), 3.81(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.92\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{H}_{\text {syn }}\right)$, $3.95(1 \mathrm{H}$, ddd, $J 8,4$, and $1,5-\mathrm{H}), 7.17(1 \mathrm{H}$, br t,$J 7), 7.39(2 \mathrm{H}$, br t, $J 7$), $7.44(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7), 7.57(2 \mathrm{H}, \mathrm{brd}, J 7), 8.02(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H}), 8.16(2 \mathrm{H}, \mathrm{d}, J 7), 8.86(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$; NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 37.3(\mathrm{C}-6), 44.6$ (C-7), 50.9 (C-4), 57.4 (C-5), 62.8 (C-8), 119.6, 120.6 (C-3), 124.3, 124.8, 126.5 (C-3a), 127.5, 129.3, 136.6, 145.8, 146.2, 147.1 (CONHPh), 163.7 (C-7a); m/z 323/321 (M - PhNCO, 1/3\%), 286 (M - ArS, 3), 167 (M - PhNCO - ArS, 10), 119 $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}, 100\right)$.

A 1:1 mixture of 5-endo-chloro-4,5,6,7-tetrahydro-4,7-methano-6-exo-(p-nitrophenylsulfenyl)-2-(phenylcarbamoyl)2 H -indazole (22) and 6-endo-chloro-4,5,6,7-tetrahydro-4,7-methano-5-exo-(p-nitrophenylsulfenyl)-2-(phenylcarbamoyl)$\mathbf{2 H}$-indazole (23). White powder (from hexane-ethyl acetate 95:5); mp $149-153{ }^{\circ} \mathrm{C}$ (Found: C, 57.45; H, 3.65; N, 12.8. $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{~S}$ requires C, $\left.57.2 ; \mathrm{H}, 3.9 ; \mathrm{N}, 12.7 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3363,3346,3160,3097,3059,2993,2981,1732,1597$, $1535,1518,1446,1356,1338,1196 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.35$ $\left(1 \mathrm{H}, \mathrm{d}, J 8,228-\mathrm{H}_{\text {syn }}\right.$ and $\left.238-\mathrm{H}_{\text {syn }}\right), 2.48(0.5 \mathrm{H}, \mathrm{d}, J 8,22$ $\left.8-\mathrm{H}_{\text {antit }}\right), 2.48\left(0.5 \mathrm{H}, \mathrm{d}, J 8,238-\mathrm{H}_{\text {anti }}\right), 3.34(0.5 \mathrm{H}, \mathrm{t}, J 4,224-\mathrm{H})$, $3.37(0.5 \mathrm{H}, \mathrm{t}, J 4,237-\mathrm{H}), 3.42(0.5 \mathrm{H}, \mathrm{s}, 227-\mathrm{H}), 3.44(0.5 \mathrm{H}, \mathrm{s}$, $234-\mathrm{H}), 3.72(1 \mathrm{H}$, br d, $J 4,226-\mathrm{H}$ and $235-\mathrm{H}), 4.39(0.5 \mathrm{H}, \mathrm{t}$, $J 4,225-\mathrm{H}), 4.45(0.5 \mathrm{H}, \mathrm{t}, J 4,236-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7), 7.38$ $(2 \mathrm{H}, \mathrm{brt}, J 7), 7.48(2 \mathrm{H}, \mathrm{d}, J 7), 7.61(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7), 8.05(0.5 \mathrm{H}$, $\mathrm{s}, 233-\mathrm{H}), 8.14(0.5 \mathrm{H}, \mathrm{s}, 223-\mathrm{H}), 8.22(2 \mathrm{H}, \mathrm{d}, J 7), 8.97(1 \mathrm{H}, \mathrm{br}$, NH); recrystallization of the $1: 1$ mixture of $\mathbf{2 2}$ and $\mathbf{2 3}$ from hexane-ethyl acetate ($3: 1$) provided a $1: 5$ mixture (mp 138$140^{\circ} \mathrm{C}$) of 22 and 23, thus the assignments are based on the spectrum of the enriched sample and NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H}$ in 23; $\delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 43.8,44.9,46.0,47.0$ $\left(\mathrm{CH}_{2}\right), 48.0\left(\mathrm{CH}_{2}\right), 48.5,56.1,57.1,63.3,63.9,119.6,119.7$, $120.1,123.6,124.3,124.5,124.6,126.0,127.9,128.1,128.2$, 129.2, 129.3, 136.7, 144.8, 144.9, 147.3, 164.3, 164.4 (5C missing in the sp^{2} region); $m / z 323 / 321$ ($\mathrm{M}-\mathrm{PhNCO}, 6 / 17 \%$), 286 ($\mathrm{M}-$ ArS, 2), 167 (M - PhNCO - ArS, 34), $119\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}, 100\right)$.

2-Benzoyl-5-exo-chloro-4,5,6,7-tetrahydro-4,7-methano-8-anti-(p-nitrophenylsulfenyl)-2H-indazole (24). White powder (from ethanol); mp 172-173 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.5; H, 3.6; N, 9.7. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, 59.2; H, 3.8; $\left.\mathrm{N}, 9.9 \%\right)$; $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3149,3029,3004,2979,1685,1595,1577,1504,1479$, $1334 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.42(1 \mathrm{H}$, ddd, $J 14,8$, and 1 , $\left.6-\mathrm{H}_{\text {endo }}\right), 2.81\left(1 \mathrm{H}, \mathrm{dt}, J 14\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.68(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H})$, $3.83(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.92\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{H}_{\text {syn }}\right), 4.00(1 \mathrm{H}$, ddd, $J 8,4$, and $1,5-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{dm}, J 9), 7.51(2 \mathrm{H}, \mathrm{dm}, J 7), 7.63(2 \mathrm{H}, \mathrm{tt}$, $J 7$ and 2$), 8.05(2 \mathrm{H}$, br d, $J 7), 8.14(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.15(2 \mathrm{H}, \mathrm{d}$, $J 9$); NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 37.3 (C-6), 44.7 (C-7), 50.7 (C-4), 57.3 (C-5), 62.3 (C-8), 121.9 (C-3), 124.2, 126.7 (C-3a), 127.4, 128.2, 131.1, 131.6, 133.0, 145.7, 146.1, 165.8, 166.7; m/z 427/425 ($\mathrm{M}^{+}, 1 / 3 \%$), 390 ($\mathrm{M}-\mathrm{Cl}, 1$), 236 ($\mathrm{M}-\mathrm{ArSCl}, 2$), 105 ($\mathrm{PhCO}, 100$).

2-Benzoyl-5-endo-chloro-4,5,6,7-tetrahydro-4,7-methano-6-

 exo-(\boldsymbol{p}-nitrophenylsulfenyl)-2H-indazole (25). White powder (from methanol); $\mathrm{mp} 119-120^{\circ} \mathrm{C}$ (Found: C, 59.4; H, 3.7; $\mathrm{N}, 9.9 . \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, 59.2; H, 3.8; $\mathrm{N}, 9.9 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3137,3016,2983,1674,1595,1576,1511,1481$, 1392,$1340 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.36\left(1 \mathrm{H}, \mathrm{d}, J 10,8-\mathrm{H}_{s y n}\right), 2.49$ $\left(1 \mathrm{H}, \mathrm{d}, J 10,8-\mathrm{H}_{\text {ant }}\right), 3.38(1 \mathrm{H}$, br d, $J 4,4-\mathrm{H}), 3.45(1 \mathrm{H}$, br s, $7-\mathrm{H}), 3.73(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4,6-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{t}, J 4,5-\mathrm{H}), 7.45(1 \mathrm{H}$, br t, $J 9$), $7.51(2 \mathrm{H}, \mathrm{brt}, J 8), 7.61(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8), 8.01(2 \mathrm{H}$, br d, $J 8), 8.16(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.23(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2$) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 45.0,45.9,47.6$ (C-8), 56.2, 64.2, 124.3, 125.0, 126.4, $128.2,128.3,131.1,132.0,132.9,144.4,166.7,166.8 ; \mathrm{m} / \mathrm{z}$ 427/425 ($\left.\mathrm{M}^{+}, 2 / 6 \%\right), 390(\mathrm{M}-\mathrm{Cl}, 3), 236(\mathrm{M}-\mathrm{ArSCl}, 10)$, 105 (PhCO, 100).
Abstract

2-Benzoyl-6-endo-chloro-4,5,6,7-tetrahydro-4,7-methano-5-exo-(p-nitrophenylsulfenyl)- $\mathbf{2 H}$-indazole (26). Colorless prisms (from chloroform-carbon tetrachloride 1:2); mp 198-199 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.5; H, 3.7; N, 10.0. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires C, 59.2; H, 3.8; N, 9.9\%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3134,3008,2962,1680$, 1593, 1581, 1511, 1477, 1392, 1355, 1336, 1320, 1309, 1294, 1247,$1238 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.35\left(1 \mathrm{H}, \mathrm{d}, J 11,8-\mathrm{H}_{s y n}\right), 2.49$ $\left(1 \mathrm{H}, \mathrm{d}, J 11,8-\mathrm{H}_{\text {anti }}\right), 3.42(1 \mathrm{H}$, br d, $J 4,7-\mathrm{H}), 3.46(1 \mathrm{H}$, br s, $4-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4,5-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{t}, J 4,6-\mathrm{H}), 7.48(1 \mathrm{H}$, br t, $J 9$), $7.51(2 \mathrm{H}, \mathrm{brt}, J 8), 7.61(2 \mathrm{H}$, br t, $J 8), 8.10(2 \mathrm{H}$, br d, $J 8), 8.15(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.19(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2$)$; NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 43.5(\mathrm{C}-4), 46.8$ (C-5), 47.8 (C-8), 57.0 (C-7), 63.2 (C-6), 121.3 (C-3), 124.2, 128.0, 128.1, 128.4 (C-3a), 131.4, 131.9, 132.8, 144.7, 145.9, 164.8, 166.8; m/z 427/425 ($\mathrm{M}^{+}, 2 / 6 \%$), $390(\mathrm{M}-\mathrm{Cl}, 3), 236$ ($\mathrm{M}-\mathrm{ArSCl}, 30$), 105 ($\mathrm{PhCO}, 100$).

5-exo-Chloro-4,5,6,7-tetrahydro-4,7-methano-2-(p-nitro-

 benzoyl)-8-anti-(\boldsymbol{p}-nitrophenylsulfenyl)-2 H -indazole (27). Yellow prisms (from chloroform-methanol 2:1); mp $261-262^{\circ} \mathrm{C}$ (Found: C, 53.4; H, 3.2; N, 11.9. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires C, 53.6; H, 3.2; N, 11.9\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3141,3027,3004,2983$, $1710,1597,1577,1508,1479,1340 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.42$ $\left(1 \mathrm{H}\right.$, ddd, $J 13,8$, and $\left.1,6-\mathrm{H}_{\text {endo }}\right), 2.81(1 \mathrm{H}, \mathrm{dt}, J 13$ and 4 , $6-\mathrm{H}_{\text {exo }}$), $3.67(1 \mathrm{H}, \mathrm{d}, J 4,7-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $8-\mathrm{H}_{\text {syn }}$), $4.00(1 \mathrm{H}$, ddd, $J 8,4$, and $1,5-\mathrm{H}), 7.44(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2), $8.16(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2$), 8.16(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.23(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2), $8.35(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2); NOE observed between $3-\mathrm{H}$ and $4-\mathrm{H} ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 35.8$ (C-6), $44.7(\mathrm{C}-7), 50.7(\mathrm{C}-4)$, 57.0 (C-5), 62.4 (C-8), 121.8 (C-3), 123.2, 124.3, 127.6, 127.7, 132.2, 137.2, 145.8, 166.7 (CO), 3C missing; m/z 316 (M - ArS, 1%), 281 (M - $\mathrm{ArSCl}, 2$), 150 ($\mathrm{ArCO}, 100$).
5-endo-Chloro-4,5,6,7-tetrahydro-4,7-methano-2-(p-nitro-

 benzoyl)-6-exo-(\boldsymbol{p}-nitrophenylsulfenyl)- $\mathbf{2 H}$-indazole (28). Yellow powder (from chloroform-methanol 2:1); mp $112-113{ }^{\circ} \mathrm{C}$ (Found: C, 53.8, H, 3.3; N, 11.6. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires C, 53.6; H, 3.2; N, 11.9\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3106,3075,3008,2987$, 1697, 1593, 1527, 1514, 1479, 1356, 1340; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$$2.37\left(1 \mathrm{H}, \mathrm{dm}, J 11,8-\mathrm{H}_{\text {syn }}\right), 2.53\left(1 \mathrm{H}, \mathrm{d}, J 11,8-\mathrm{H}_{\text {anti }}\right), 3.38(1 \mathrm{H}$, $\mathrm{t}, J 4,4-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{d}, J 4,6-\mathrm{H}), 4.44$ $(1 \mathrm{H}, \mathrm{t}, J 4,5-\mathrm{H}), 7.47(2 \mathrm{H}, \mathrm{d}, J 9), 8.17(2 \mathrm{H}, \mathrm{d}, J 9), 8.25(2 \mathrm{H}, \mathrm{d}$, $J 9), 8.26(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.36(2 \mathrm{H}, \mathrm{d}, J 9) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 44.9 (C-4), 45.9 (C-5), 47.5 (C-8), 56.1 (C-7), 64.0 (C-6), 123.2 (C-3), 124.3, 124.7, 127.4, 128.3 (C-3a), 132.2, 137.6, 144.2, 146.1, 149.9, 164.9, 167.6; m/z 472/470 ($\left.\mathrm{M}^{+}, 2 / 6 \%\right), 435$ ($\mathrm{M}-\mathrm{Cl}, 7$), 316 ($\mathrm{M}-\mathrm{ArS}, 12$), $281(\mathrm{M}-\mathrm{ArSCl}, 7), 150$ (ArCO, 100).

6-endo-Chloro-4,5,6,7-tetrahydro-4,7-methano-2-(p-nitro-benzoyl)-5-exo-(p-nitrophenylsulfenyl)- $\mathbf{2 H}$-indazole (29). Yellow prisms (from chloroform); mp 211-212 ${ }^{\circ} \mathrm{C}$ (Found: C, 53.5 ; H, $3.0 ; \mathrm{N}, 11.8 . \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{~S}$ requires C, 53.6; H, 3.2; $\mathrm{N}, 11.9 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3101,3070,3033,2987,1685,1596,1527,1512$, $1479,1336,1319,1295,1276 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.36(1 \mathrm{H}$, $\left.\mathrm{dm}, J 11,8-\mathrm{H}_{s y n}\right), 2.53\left(1 \mathrm{H}, \mathrm{d}, J 11,8-\mathrm{H}_{\text {anti }}\right), 3.41(1 \mathrm{H}, \mathrm{t}, J 4$, $4-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{d}, J 4,6-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{t}$, $J 4,5-\mathrm{H}), 7.49(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2$), 8.17(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.20(2 \mathrm{H}$, $\mathrm{dt}, J 9$ and 2), $8.26(2 \mathrm{H}, \mathrm{dt}, J 9$ and 2), 8.35 ($2 \mathrm{H}, \mathrm{dt}, J 9$ and 2); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 43.5(\mathrm{C}-4), 46.8$ (C-5), 47.7 (C-8), 57.0 (C-7), 63.0 (C-6), 121.3 (C-3), 123.1, 124.3, 128.2, 129.3 (C-3a), 132.4, 137.5, 144.4, 146.0, 149.9, 165.0, 165.8; m/z 472/470 $\left(\mathrm{M}^{+}, 5 / 14 \%\right), 435(\mathrm{M}-\mathrm{Cl}, 23), 316(\mathrm{M}-\mathrm{ArS}, 16), 281(\mathrm{M}-$ $\mathrm{ArSCl}, 16), 150$ (ArCO, 100).

5-exo-Chloro-1-ethyl-4,5,6,7-tetrahydro-4,7-methano-8-anti(\boldsymbol{p}-nitrophenylsulfeny)-1 \boldsymbol{H}-indazole (32). Colorless prisms (from ethyl acetate); $\mathrm{mp} 158-159^{\circ} \mathrm{C}$ (Found: 54.8; H, 4.5; $\mathrm{N}, 12.2 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C, 54.9; H, 4.6; $\mathrm{N}, 12.0 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2997,1579,1508,1504,1477,1334 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.46(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 2.14(1 \mathrm{H}$, ddd, $J 13,8$, and $\left.1,6-\mathrm{H}_{\text {endo }}\right), 2.66\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,6-\mathrm{H}_{\text {exo }}\right), 3.65(1 \mathrm{H}, \mathrm{d}, J 4$, $7-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.78(1 \mathrm{H}$, dd, $J 8$ and $4,5-\mathrm{H}), 3.95(1 \mathrm{H}$, br s, $8-\mathrm{H}_{s y n}$), $4.15\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2}\right), 7.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.43(2 \mathrm{H}$, d, $J 9$), $8.15(2 \mathrm{H}, \mathrm{d}, J 9)$; NOE observed between 3-H and 4-H; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.6(\mathrm{Me}), 36.9(\mathrm{C}-6), 44.6(\mathrm{C}-7), 45.9$ $\left(\mathrm{CH}_{2}\right), 51.7(\mathrm{C}-4), 57.9(\mathrm{C}-5), 63.8(\mathrm{C}-8), 124.2,125.3(\mathrm{C}-3 \mathrm{a})$, 127.6, 130.7 (C-3), 145.7, 146.6, 149.3; m/z 351/349 ($\mathrm{M}^{+}, 1 / 3 \%$), $314(\mathrm{M}-\mathrm{Cl}, 1), 195(\mathrm{M}-\mathrm{ArS}, 29), 147(\mathrm{M}-\mathrm{ArSCl}-\mathrm{CH}$, 100).

References

1 J. March, Advanced Organic Chemistry, Wiley-Interscience, New York, 1985, p. 277.
2 M. B. Smith, Organic Synthesis, McGraw-Hill, Inc., Tokyo, 1994, p. 266 , p. 274 , p. 580.

3 T. Kobayashi, Yuki Gosei Kagaku Kyokaishi, 1998, 56, 192.
4 T. Kobayashi, T. Tsuzuki and M. Saitoh, Bull. Chem. Soc. Jpn., 1999, 72, 1597
5 T. Kobayashi, H. Sugawara and B. Nikaeen, Bull. Chem. Soc. Jpn., 1998, 71, 497.
6 T. Kobayashi and K. Miki, Bull. Chem. Soc. Jpn., 1998, 71, 1443.
7 T. Kobayashi, K. Miki, N. Behrooz and H. Baba, Tetrahedron, 1999, 55, 13179.
8 A. P. Davis and G. H. Whitham, J. Chem. Soc., Chem. Commun., 1980, 639.
9 A. Padwa and M. W. Wannamaker, J. Chem. Soc., Chem. Commun., 1987, 1742.
10 M. Yoshimatsu, M. Kawahigashi, E. Honda and T. Kataoka, J. Chem. Soc., Perkin Trans. 1, 1997, 695.

11 J. Elguero, C. Marzin, A. R. Katritzky and P. Linda, The Tautomerism of Heterocycles, Advances in Heterocyclic Chemistry Supplement 1, Academic Press, New York, 1976, Chapter 4.
12 A. N. Nesmeyanov, E. B. Zavelovich, V. N. Babin, N. S. Kochetkova and E. I. Fedin, Tetrahedron, 1975, 31, 1461.
13 A. A. Watson, D. A. House and P. J. Steel, Polyhedron, 1989, 8, 1345.

14 M. C. López, N. Jagerovice and P. Ballesteros, Tetrahedron: Asymmetry, 1994, 5, 1887.
15 H. Kotsuki, H. Hayakawa, M. Wakao, T. Shimanouchi and M. Ochi, Tetrahedron: Asymmetry, 1995, 2665.

16 H. Kotsuki, M. Wakao, H. Hayakawa, T. Shimanouchi and M. Shiro, J. Org. Chem., 1996, 61, 8915.

17 P. D. Bartlett and C. Wu, J. Org. Chem., 1984, 49, 1880.
18 W. M. Smit, N. S. Zefirov, I. V. Bodrikov and M. Z. Krimer, Acc. Chem. Res., 1979, 12, 282.
19 N. S. Zefirov, N. K. Sadovaya, L. A. Novgorodtseva and I. V. Bodrikov, Tetrahedron, 1978, 34, 1373.
20 N. S. Zefirov, N. K. Sadovaya, L. A. Novgorodtseva, R. S. Achmedova, S. V. Baranov and I. V. Bodrikov, Tetrahedron, 1979, 35, 2759.

21 V. N. Ermolaeva, N. K. Sadovaya and N. S. Zefirov, Zh. Org. Khim., 1981, 17, 1554.
22 T. J. Dudley, I. P. Smoliakova and M. R. Hoffmann, J. Org. Chem., 1999, 64, 1247.
23 L. Pasquato and G. Modena, Chem. Commun., 1999, 1469.
24 Calculated with MacSpartan Plus Ver. 1.2, Wavefunction, Inc., Irvine, California, U.S.A
25 H. Meerwein, Org. Synth., 1973, Coll. Vol. V, 1080.

